#### EMC

INFRASTRUCTURE AS A SUPERPOWER EXECUTIVE FORUM TRANSFORM YOUR DATA CENTRE – TRANSFORM YOUR BUSINESS Thursday, 12 May, 2016 | The Maslow Hotel, Sandton





Bart Sjerps Principal Systems Engineer EMC EMEA bart.sjerps@emc.com +31-6-27058830 Blog: http://bartsjerps.wordpress.com



EMC<sup>2</sup>

### INCREASING ORACLE PERFORMANCE WITH FLASH AND RETIRING OBSOLETE PERFORMANCE PRACTICES

## AGENDA

- Introduction
- Database & Application Challenges
- The XtremIO Solution
- Integrated Copy Data Management
- Self-Service Options for Databases
- Q&A



# DATABASES AND APPLICATIONS TODAY

### THE GROWTH CONTINUES



Number of DBs organization



Organizations seeing increase in number of Oracle DBs



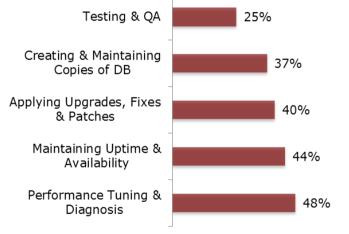


Hours to provision fully loaded database

22%

Organizations pursuing Database as a Service Initiatives

**EMC<sup>2</sup>** 


Source: 2015 IOUG Survey on Database Manageability; Oracle surveys

### ORACLE CUSTOMER CHALLENGES TOO MUCH TIME & BUDGET SPENT MAINTAINING ORACLE



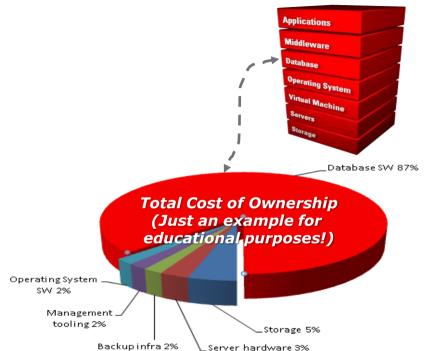


### **Time Spent on Maintenance**



**Top 5 Database Activities** (Source: 2014 IT Resource Strategies Survey)

### WHY LOOK AT LICENSING?

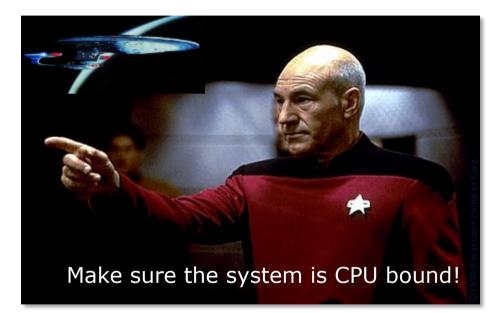

- Oracle DB licensing is expensive
  - Midsize server (24 cores):

HW ~ \$ 50,000

SW ~ \$ 483,000 @ 50% discount 5Y maintenance ~ \$531,000

(Enterprise Edition + basic options)

- What if we add RAC? Active DG? Pluggable DB?
- Large part of the TCO of a database infrastructure stack




**EMC**<sup>2</sup>

### If we can save 10% on db licenses... We easily justified 50% more expensive infrastructure

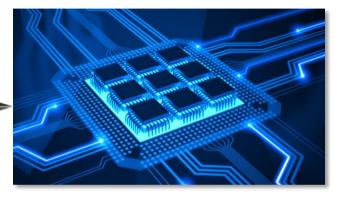
### DATABASES SHOULD NOT HAVE I/O WAIT

- Adding CPU does not speed up I/O bottlenecks
  - Memory does somewhat
- IOPS are relatively (!) cheap
- CPU cycles are expensive
  - Because of licenses
- Consolidation leads to
  - Higher IO requirements
  - I/O bottlenecks
  - Bandwidth issues
- Flash storage can solve these limitations



### STORAGE IS NO LONGER THE BOTTLENECK



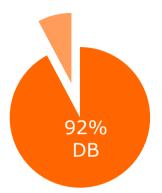

# SPINNING DISK IS 60+ YEARS OLD AND SLOWLY DYING





- One seek at a time
- Mechanical latency (7ms)
- Max 150 random IOPS
- Good at sequential IO
- No write penalty

"When 900 years old you reach Look as good you will not" -- Yoda (Return of the Jedi)




- Parallel requests (0.1 ms)
- No mechanical latency
- VS. · Virtually unlimited IOPS
  - Good at sequential IO
  - Write penalty compensated by controller (cache, leveling)

# IO-BOUND DATABASE SERVER

### 4 hours time wasted by high-latency random reads

Top 5 Timed Foreground Events



EMC

| Event                   | Waits     | Time(s) | Avg<br>wait<br>(ms) | % DB<br>time Wait Class |
|-------------------------|-----------|---------|---------------------|-------------------------|
| db file sequential read | 1,420,110 | 14,362  | 10                  |                         |
| Tree builer waits       | 89,072    | 986     | 11                  | 6.4 Configurat          |
| DB CPU                  |           | 158     |                     | 1.0                     |
| library cache lock      | 138       | 51      | 371                 | .3 Concurrenc           |
| write complete waits    | 9         | 17      | 1919                | .1 Configurat           |

# AFTER MOVING TO ALL FLASH ARRAY

| Event                     | Waits   | %Time<br>-outs | Total Wait<br>Time (s) | Avg<br>wait<br>(ms) | Waits<br>/txn | % DB<br>time |
|---------------------------|---------|----------------|------------------------|---------------------|---------------|--------------|
|                           |         |                |                        |                     |               |              |
| direct path read          | 361,425 | 0              | 930                    | 3                   | 7,376.0       | 16.4         |
| db file parallel read     | 365,088 | 0              | 898                    | 2                   | 7,450.8       | 15.9         |
| db file scattered read    | 64,628  | 0              | 114                    | 2                   | 1,318.9       | 2.0          |
| db file sequential read   | 56,748  | 0              | 84                     | 1                   | 1,158.1       | 1.5          |
| gc cr multi block request | 137,524 | 0              | 62                     | 0                   | 2,806.6       | 1.1          |
| direct path read temp     | 19,942  | 0              | 44                     | 2                   | 407.0         | . 8          |
| read by other session     | 17,389  | 0              | 31                     | 2                   | 354.9         | . 6          |

|                         |         |         | Avg<br>wait | % DB            |
|-------------------------|---------|---------|-------------|-----------------|
| Event                   | Waits   | Time(s) | (ms)        | time Wait Class |
|                         |         |         |             |                 |
| DB CPU                  |         | 3,427   |             | 60.5            |
| direct path read        | 361,425 | 930     | 3           | 16.4 User I/O   |
| db file parallel read   | 365,088 | 898     | 2           | 15.9 User I/O   |
| db file scattered read  | 64,628  | 114     | 2           | 2.0 User I/O    |
| db file sequential read | 56,748  | 84      | 1           | 1.5 User I/O    |

EMC<sup>2</sup>

Avg. latency went down by more than 70%

CPU utilization doubled

### THE IOPS RACE IS OVER MILLION IOPS? 2 MILLION IOPS? 5 MILLION IOPS? WHO CARES?

| GAME OVER                                                                          |
|------------------------------------------------------------------------------------|
| YOU FIRED 25 ROUNDS OF<br>AMMO IN 90 SECONDS.<br>YOU DESTROYED 5 ENEMY SPACESHIPS. |
| (HIT 'RETURN' TO PLAY AGAIN)                                                       |
|                                                                                    |

### **Every flash vendor these days offers:**

Huge IOPS numbers Very low latency

Average small AFA: >> 200K IOPS Average large DB: << 50K IOPS

Competing in the FLASH business is not about IOPS and latency any more \*) -- Bart Sjerps, 2016

**EMC**<sup>2</sup>

\*) Considering generic Oracle workload consolidations here - Large scale DWH/BI is a special case.

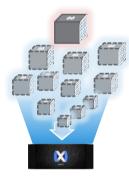
# What are differentiating features of Flash solutions for databases - if it isn't IOPS and latency?

# PERFORMANCE: PREDICTABLE & SCALABLE

ARCHITECTED FOR PREDICTABLE & CONSISTENT PERFORMANCE

### Latency

Consistent performance even as SAP workloads (IOPS) increase & scale


### Benefits

- No tuning or overprovisioning for SAP
- Size for utilization, not SAP peak performance
- Confidently meet SLAs
- Run SAP analytics and suite always, anytime, faster
- 1 10TB X-Brick vs. 35TB competitor array (4x more expensive) 5.000 4.500 Latencv 4.000 Competitor 3.500 3.000 2.500 2 000 1.500 1.000 0.500 0.000 Xtrem IO 80.000 50 000 40.000 30.005 20.000 IOPS 10,000

**EMC**<sup>2</sup>

\* non-SAP workload Actual data, 8KB OLTP workload\* © 2016 EMC Corporation - All Rights reserved | INFRASTRUCTURE AS A SUPERPOWER | EXECUTIVE FORUM | Bart Sjerps

# WHAT IF YOU COULD SIMULTANEOUSLY ...



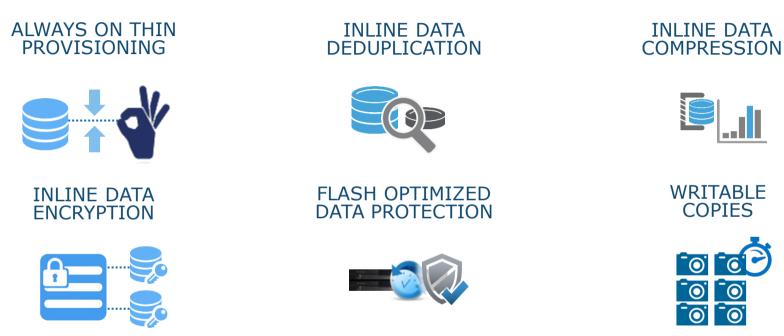
Consolidate **everything**: dev, test, production, analytics



Meet DB performance SLAs



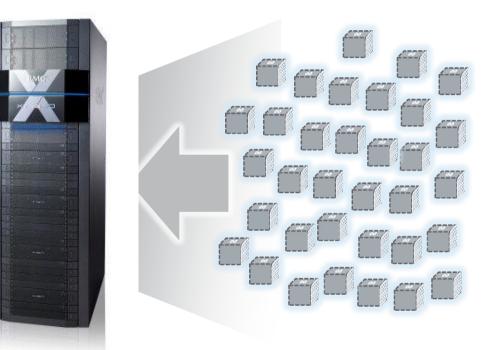
Simplify DB operations; deploy apps sooner




Reduce product & administrative costs



## **XTREMIO DATA SERVICES**


ALWAYS-ON, INLINE, ZERO PENALTY



### *Up To 6:1 Database Reduction On Average Just For Production Databases*

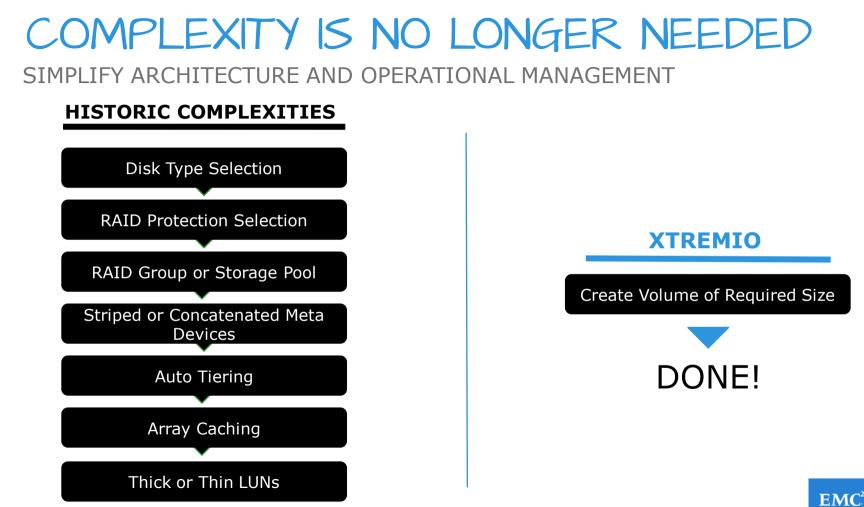
EMC<sup>2</sup>

## EMC XTREMIO REDEFINES DATABASES CONSOLIDATE EVERYTHING ON THE SAME INFRASTRUCTURE



Production databases Development databases Functional & performance testing Analytics / OLAP Oracle & SAP applications

### All while maintaining performance & availability SLAs!




# XTREMIO IS #I WITH 34% MARKET SHARE



"Magic Quadrant in Solid State Analysis" – Gartner 2014
 "#1 Market Share 2014" – IDC
 "Leader in Strategic AFA Technology" – 451 Research
 "DBTA Trend-Setting Product for 2016" – DBTA Magazine
 © 2016 EMC Corporation - All Rights reserved | INFRASTRUCTURE AS A SUPERPOWER | EXECUTIVE FORUM | Bart Sjerps





### OTHER OBSOLETE PRACTICES SIMPLIFY ARCHITECTURE AND OPERATIONAL MANAGEMENT



Under-allocation (disk "short stroking")



Data Separation



Pre-fetching (attempting to predict the future)



### Striping

EMC<sup>2</sup>



Monster caches (preloading everything)

# MORE OBSOLETE PRACTICES

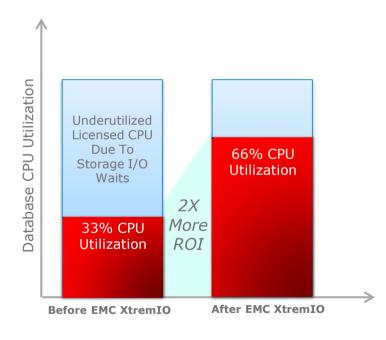


Classic RAID (Having only one extra safety rope)



Full data copies (Avoiding I/O interference)




Storage Layers / Tiering (choice between performance or economics)



Direct Attached Storage (Trading redundancy & sharing for bandwidth & cost)

EMC<sup>2</sup>

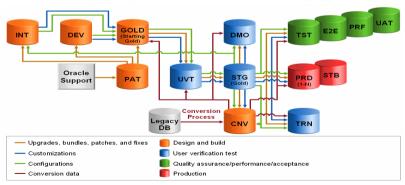
# FLASH INCREASES LICENSE ROI INCREASED CPU UTILIZATION REDUCING I/O WAITS



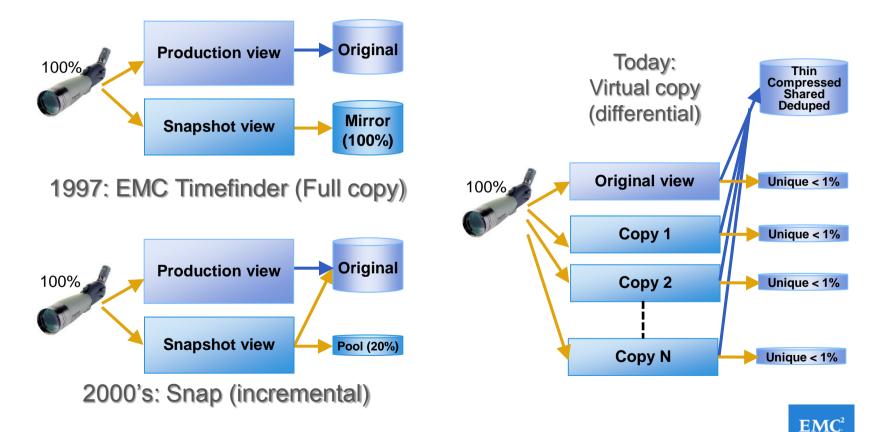
# HIGHER UTILIZATION **OF DATABASE** LICENSE INVESTMENT

**EMC**<sup>2</sup>

Source: XtremIO Customer Case Study


# WHY DATABASE CLONING?

#### "Serverless backups" & Quick restores


- Zero production performance impact
- RTO seconds to minutes
- Protected & Instant restores
- Out-of-order restores
- Instant Restore from remote copies
- Firefighting
  - Creating a quick production copy to solve application problems
  - Without messing with production data
- Creating Test / Dev / Acceptance copies
  - Automated, no tape restores, low people effort
- Creating copies for reporting / staging
  - Datawarehouse queries can bring production performance down
  - Moving reporting workload to copy relieves production
- Application / Database Upgrades
  - Creating application "checkpoints" avoids having to fall back to starting point due to small errors
  - Easy upgrade testing



Sooam is the world leader in dog cloning. Since 2005 they have produced more than 550 cloned puppies.



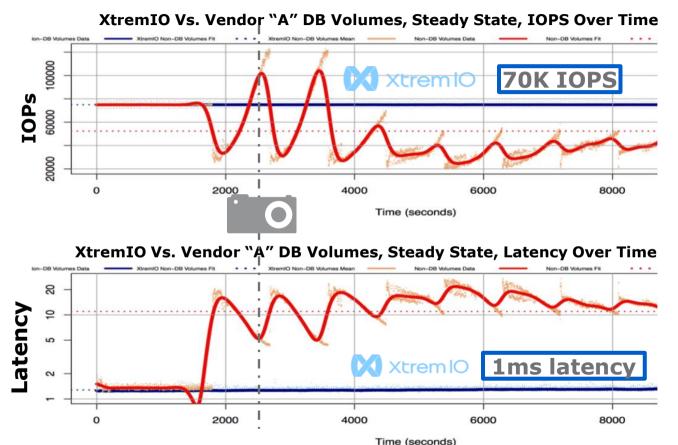
## **BUSINESS DATA CLONING - INNOVATIONS**



# **XTREMIO VIRTUAL COPIES**



### Efficient In-Memory Copies


No space reservation or moving blocks
 No metadata bloat, shared in-memory metadata
 Immediate creation with no impact on prod
 Thin provisioning, dedup, compression

### 100% Performance

- Same performance as prod
- Predictable performance on prod or copies
- ►---> No impact on prod when copies are created
- Optimal SLA

EMC<sup>2</sup>

## XVC VS. TRADITIONAL SNAPSHOTS



### **XtremIO**

- No impact on copy creation
- Consistent performance on prod and copy

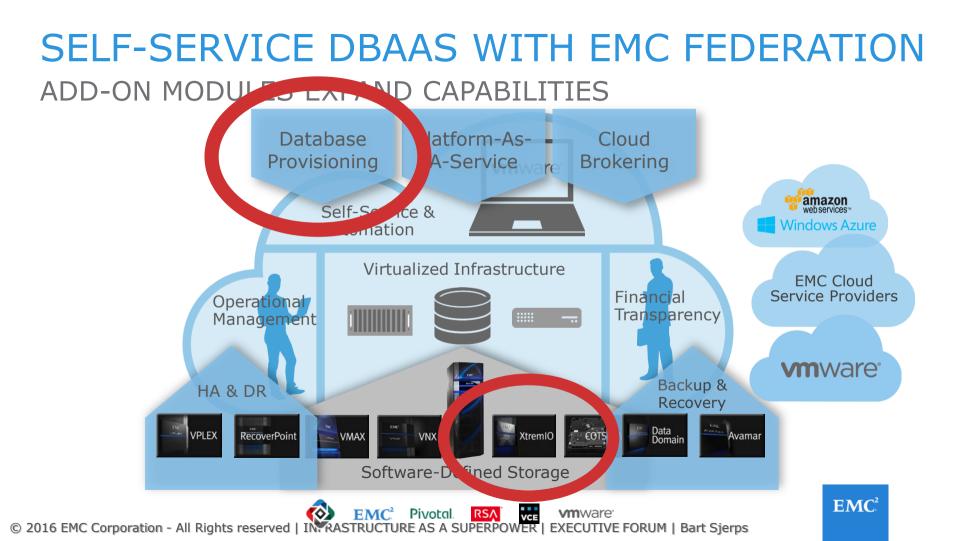
### **Vendor A**

- **IOPs** drop by 50% to **35K**
- Spikes to 20ms
   latency

**EMC**<sup>2</sup>

# ENSURE DATA PROTECTION

# PROTECT FROM LOGICAL DATA CORRUPTION BY CREATING SNAPSHOTS OVER SHORT INTERVALS




### SELF-SERVICE WITH ORACLE ENTERPRISE MANAGER FREE XTREMIO PLUG-IN

| Enterprise 🔻 🎯 Targets 👻 🃩 Eavorites 👻 🌝 History 👻                                       |                                                                                     |                                                                |                                             |                   |                           |                                  |                                             |                                                  | Search          | Target Name  | *                          |                       |                                  |
|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------|-------------------|---------------------------|----------------------------------|---------------------------------------------|--------------------------------------------------|-----------------|--------------|----------------------------|-----------------------|----------------------------------|
| /nx-7986 @<br>emc_vnx •                                                                  |                                                                                     |                                                                |                                             |                   |                           |                                  |                                             |                                                  |                 | Page Refi    | reshed Sep 1               | 1, 2013 12::          | 10.110.79. 10:14 PM GMT (        |
| Summary                                                                                  |                                                                                     |                                                                | ✓ Incidents                                 | and Problem       | ms                        |                                  |                                             |                                                  |                 |              |                            |                       |                                  |
| Target Name                                                                              | * Target Local target and related targets 💌 * Category Al 👽   🗢 0   🕲 1   🛕 0   🏲 0 |                                                                |                                             |                   |                           |                                  |                                             |                                                  |                 |              |                            |                       |                                  |
| Current Status 💮 Up<br>Up Since Sep 10 9:28:48<br>Agent Host 10.110.79.86                |                                                                                     |                                                                | Messa                                       | ge 🛛              | Target                    |                                  | Severity                                    | Status                                           | Escalated       |              | Туре                       | 1 🔺 Time S            | ince Last Up                     |
|                                                                                          |                                                                                     |                                                                | Compliance s                                | core 51% is b     |                           |                                  | 8                                           | New                                              | •               | Inciden      |                            | 20 da<br>Jpdated: Sep | ys 16 hours<br>11, 2013 12:14 pm |
| Device Map                                                                               |                                                                                     |                                                                | SP Busy                                     |                   |                           |                                  |                                             |                                                  |                 |              |                            |                       |                                  |
| Device VNX L Capaci ASM D                                                                |                                                                                     |                                                                |                                             |                   |                           |                                  |                                             |                                                  |                 |              |                            |                       |                                  |
|                                                                                          |                                                                                     | . H3M D                                                        |                                             |                   |                           |                                  |                                             | r A busy(76) - 3r b                              | DUSY( /0)       |              |                            |                       |                                  |
|                                                                                          | 0008                                                                                | 50 DG1                                                         |                                             |                   |                           |                                  |                                             | A DOSY(76) - 3P D                                | Δυσγ(70)        |              |                            |                       | ^                                |
| /dev/sdb 0<br>/dev/sdc 0                                                                 |                                                                                     |                                                                | 4                                           |                   |                           | $\wedge$                         |                                             |                                                  |                 |              | ~                          | 1 ^                   | -m                               |
| /dev/sdb 0<br>/dev/sdc 0                                                                 | 0008                                                                                | 50 DG1                                                         | 4                                           | M_/               | X7 V                      |                                  |                                             |                                                  |                 |              | $\overset{\sim}{\sim}$     | $\sim$                | XA                               |
| /dev/sdb 0<br>/dev/sdc 0                                                                 | 0008                                                                                | 50 DG1<br>50 DG1                                               |                                             | :00:00            | Sep 10 15:00:0            | 0 Sep 10                         | $\mathcal{M}$                               | XA                                               |                 | 10 23:00:00  | Sep 11                     | 1:00:00               | Sep 11 3:00:00                   |
| /dev/sdb 0<br>/dev/sdc 0                                                                 | 0008                                                                                | 50 DG1<br>50 DG1                                               | 2<br>0                                      |                   | Sep 10 15:00:0            | 0 Sep 10                         | $\mathcal{M}$                               | X                                                |                 | 10 23:00:00  | Sep 11                     | 1:00:00               | Sep 11 3:00:00                   |
| /dev/sdb 0<br>/dev/sdc 0<br>/dev/sdd 0                                                   | 0008                                                                                | 50 DG1<br>50 DG1                                               | 2<br>0<br>Sep 10 13                         |                   |                           | 0 Sep 10                         | 17:00:00 Sep                                | X                                                |                 |              | Sep 11                     | 1:00:00<br>RAID       | Sep 11 3:00:00                   |
| /dev/sdb 0<br>/dev/sdc 0<br>/dev/sdd 0                                                   | 0008 0007 0010 0010 0010                                                            | 50 DG1<br>50 DG1<br>10 ASMLIBDG                                | 2<br>0<br>Sep 10 13                         | ıps               |                           |                                  | 17:00:00 Sep                                | 10 19:00:00 Sep                                  | 10 21:00:00 Sep | ⊻ LUNs<br>ID |                            |                       |                                  |
| /dev/sdb 0<br>/dev/sdc 0<br>/dev/sdd 0<br>/dev/sdd 0                                     | 0008<br>0007<br>0010<br>4s<br>RAID Type                                             | 50 DG1<br>50 DG1<br>10 ASMLIBDG<br>% Full                      | 2<br>0<br>Sep 10 13<br>ID<br>0              | иря<br>Туре       | LUNs                      | Free                             | 17:00:00 Sep                                | 10 19:00:00 Sep<br>Cap. (GB)                     | 10 21:00:00 Sep | LUNS<br>ID   | Name                       | RAID                  | Capa                             |
| /dev/sdb 0<br>/dev/sdc 0<br>/dev/sdd 0<br>/dev/sdd 0<br>Storage Poo<br>Pool Name<br>Data | 0008 0007 00010   RAID Type r_5                                                     | 50 DG1<br>50 DG1<br>10 ASMLIEDG<br>% Full<br>9% Full<br>95.409 | 2<br>5ep 10 13<br>MAID Grow<br>ID<br>0<br>1 | иря<br>Туре<br>r5 | LUNs<br>9 8038 8039       | Free<br>642809856                | 17:00:00 Sep<br>Disks<br>10<br>0:0:0        | 10 19:00:00 Sep<br>Cap. (GB)<br>274845           | % Full 0        | UNS ID       | Name<br>0 LUN 0            | RAID                  | Capa                             |
| /dev/sdb 0<br>/dev/sdc 0<br>/dev/sdd 0<br>/dev/sdd 0<br>Storage Poo<br>Pool Name<br>Data | 0008 0007 00010   RAID Type r_5                                                     | 50 DG1<br>50 DG1<br>10 ASMLIEDG<br>% Full<br>9% Full<br>95.409 | 2<br>0<br>Sep 10 13<br>ID<br>0<br>1<br>200  | r5<br>r1_0        | LUNs<br>9 8038 8039<br>11 | Free  <br>642809856<br>329981952 | 17:00:00 Sep<br>☑ Disks<br>☑ 0:0:0<br>0:0:1 | 10 19:00:00 Sep<br>Cap. (GB)<br>274845<br>274845 | % Full          | ID LUNS      | Name<br>0 LUN 0<br>1 LUN 1 | RAID<br>r_5<br>r_5    | Capa                             |

- Manage & monitor the Oracle environment, including storage
- Automate tasks and assist on database administration
- Monitor XtremIO utilization, configuration, and performance
  - Throughput and IOPS
  - Response Time
- Set thresholds and notifications for key XtremIO health indicators

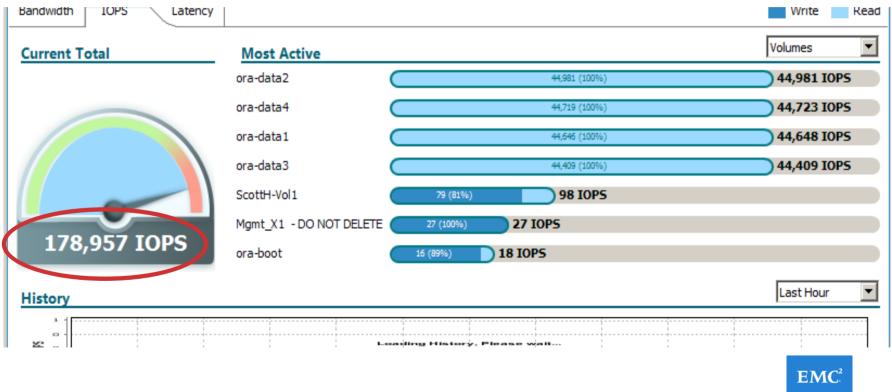




# SILLY LITTLE ORACLE BENCHMARK

### I/O PROFILING FOR ORACLE – TEST RESULTS




Info & download: XtremIO.com/slob

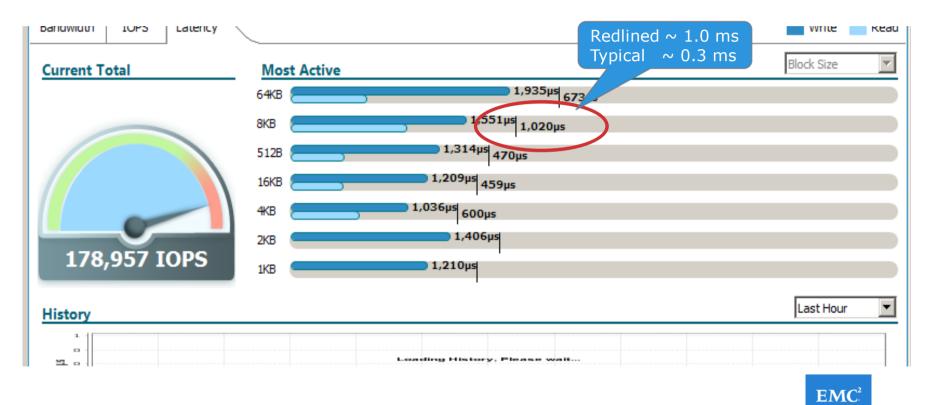
RPM pre-packaged version: SLOB RPM Wiki on Outrun



# PERFORMANCE EXAMPLE WITH SLOB

LAB TEST: 1 V2.4 X-BRICK, 3 VM'S ORACLE 11.2.0.4.0, VMDKS




# PERFORMANCE EXAMPLE WITH SLOB

BANDWIDTH (1 X-BRICK – LINEAR SCALABLE TO 10 X-BRICKS)

| Bandwidth IOPS Latency |                         |            | Write Read |
|------------------------|-------------------------|------------|------------|
| Current Total          | Most Active             |            | Volumes 💌  |
|                        | ora-data4               | 553 (100%) | 553 MB/s   |
|                        | ora-data2               | 552 (100%) | 552 MB/s   |
|                        | ora-data1               | 551 (100%) | 551 MB/s   |
|                        | ora-data3               | 548 (100%) | 548 MB/s   |
|                        | Mgmt_X1 - DO NOT DELETE | < 1MB/s    |            |
|                        | xSEhost12_C1_B4         | < 1MB/s    |            |
| 2,208 MB/s             | xSEhost16_C1_B8         | < 1MB/s    |            |
| History                |                         |            | Last Hour  |
|                        |                         |            |            |

## PERFORMANCE EXAMPLE WITH SLOB

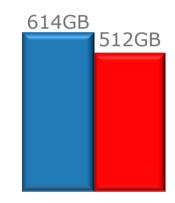
### LATENCY (NEARLY ALL I/O IS 8K RANDOM)



### COMPARING COMPRESSION CHOICES STORAGE VS DATABASE COMPRESSION

### XtremIO Compression

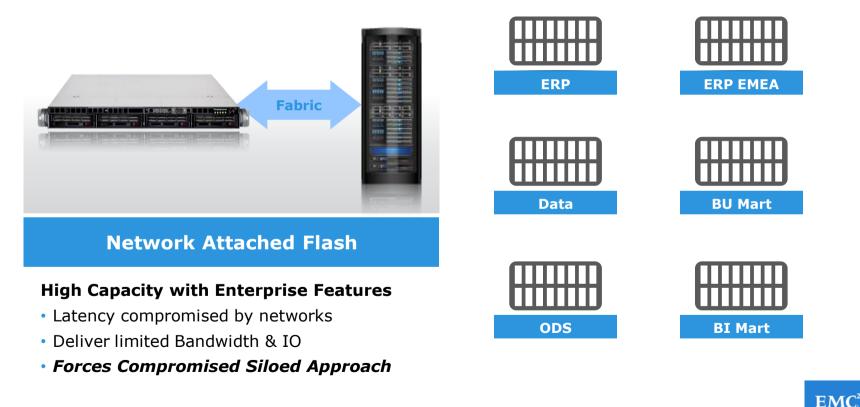
Oracle Advanced Compression


### Workload



- All data is compressed
- No increase in database server processor utilization
- No DBA overhead
- No additional cost




Does XtremIO and ACO Work Together?

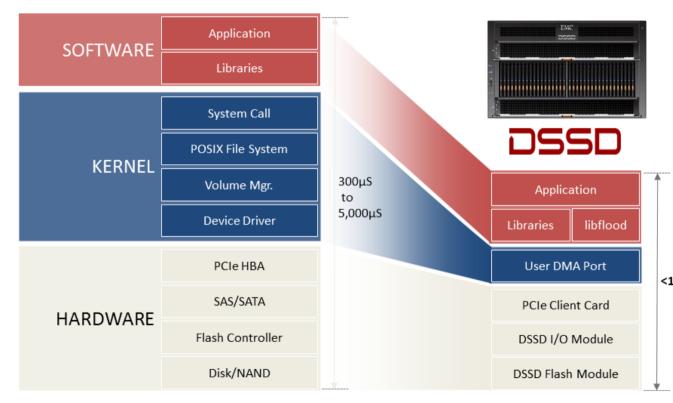


- Only database is compressed
- Increase in database server processor utilization
- Accelerates queries
- Additional cost: \$11,500 per processor



### WHAT IF YOU NEED MORE BANDWIDTH? HUGE DWH/BI WORKLOADS - CLASSIC APPROACH




### SOLVING DWH/BI BANDWITDH PROBLEMS CLASSIC SOLUTIONS

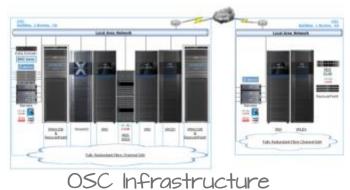
- Materialized views
- Heavy indexing / partitioning
- Multiple copies / subsets
  - data marts
  - Business copies (snapshots)
- Attempt to offload in storage
  - Storage indexes
  - Columnar storage / compression





### INNOVATION: NVME I/O PROTOCOL EMC DSSD: PCIE DIRECT ACCESS TO SSD




- ✓ 10M IOPS✓ 100 GB/s
- ✓ <0.1 ms

Enterprise Readiness ✓ Data protection ✓ Redundancy ✓ Consistent performance

EMC<sup>2</sup>

## EMC/ORACLE SOLUTIONS CENTER





- Shared services for Oracle & EMC
  - Over 500 servers
  - Over 1PB EMC storage
  - Fully Virtualized on VMware
- Provides infrastructure for
  - Oracle's Training & demos
  - EMC Demos
  - EMC POCs
- Oracle Integration Demos
  - Storage integration, cloning & replication
  - HA Stretched clusters
  - Management tooling





**EMC<sup>2</sup>** 

# REFERENCES

My Blog "Dirty Cache"

http://bartsjerps.wordpress.com

Everything Oracle @ EMC (community):

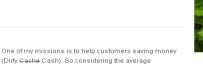
### http://emc.com/everythingoracle

XtremIO

http://xtremio.com/

Outrun:

http://outrun.nl






A storage infrastructure perspective on optimizing business applications

Dirty Cache

- Thank you, Larry Ellison



(Dirty Cache Cash). So considering the average enterprise application environment, I frequently ask them where they spend most of their IT budget on. Is it servers? Networks? Middleware? Applications?

Turns out that if you look at the operating cost of an Oracle database application, a very big portion of the TCO is in database licenses. Note that I focus on Oracle (that's my job) but for other databases the cost ratio might be similar. Or not. But it makes sense to look at Oracle as that is the most common platform for mission-critical applications. So let's look at a database environment and forget about the application for now. Let's say that 50% of the operating cost of a database server is spent on Oracle licensing and maintenance



Keep Calm and run your Oracle workload

XtremIO



Follow Blog via En Enter your email address receive notifications of nev Join 37 other followers

EMC<sup>2</sup>

